24. M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H.
Gracias, M.C. McAlpine, 3D Printed bionic ears. Nano Lett. 13 (2013) 2634−2639.
25. Y. Lee, S.G. Yim, G.W. Lee, S. Kim, H.S. Kim, D.Y. Hwang, B. An, J.H. Lee, S. Seo, S.Y. Yang,
Self-adherent biodegradable gelatin-based hydrogel electrodes for electrocardiography
monitoring. Sensors 20 (2020) 5737.
26. H. Wang, J. Lu, H. Huang, S. Fang, M. Zubair, Z. Peng, A highly elastic, Room-temperature
repairable and recyclable conductive hydrogel for stretchable electronics. J Coll Interf Sc 588
(2021) 295–304.
27. J. Yeom, A. Choe, S. Lim, Y. Lee, S. Na, H. Ko, Soft and ion-conducting hydrogel artificial
tongue for astringency perception. Sci Adv 6 (2020) eaba5785.
28. Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim, S. Niu, H. Wang, X. Wang, A.M. Foudeh, J.B.-H. Tok,
Z. Bao, Soft and elastic hydrogel-based microelectronics for localized low-voltage neuro
modulation. Nat Biomed Eng 3 (2019) 58–68.
29. V. Panwar, A. Babu, A. Sharma, J. Thomas, V. Chopra, P. Malik, S. Rajput, M. Mittal, R.
Guha, N. Chattopadhyay, D. Mandal, D. Ghosh, Tunable, conductive, self-healing, adhesive
and injectable hydrogels for bioelectronics and tissue regeneration applications. J Mater Chem
B 9 (2021) 6260–6270.
30. M. Dong, B. Shi, D. Liu, J.H. Liu, D. Zhao, Z.H. Yu, X.Q. Shen, J.M. Gan, B.L. Shi, Y. Qiu,
Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coales
cing with a damaged peripheral nerve. ACS Nano 14 (2020) 16565–16575.
31. Y. Tan, Y. Zhang, Y. Zhang, J. Zheng, H. Wu, Y. Chen, S. Xu, J. Yang, C. Liu, Y. Zhang, Dual
cross-linked ion-based temperature-responsive conductive hydrogels with multiple sensors
and steady electrocardiogram monitoring. Chem Mater 32 (2020) 7670–7678.
32. S. Liang, Y. Zhang, H. Wang, Z. Xu, J. Chen, R. Bao, B. Tan, Y. Cui, G. Fan, W. Wang, W.
Wang, W. Liu, Paintable and rapidly bondable conductive hydrogels as therapeutic cardi
acpatches. Adv. Mater 30 (2018) 1704235.
33. X. Yang, L. Cao, J. Wang, L. Chen, Sandwich-like polypyrrole/reduced graphene oxide
nanosheets integrated gelatin hydrogel as mechanically and thermally sensitive skin like
bioelectronics. ACS Sustain Chem Eng 8 (2020) 10726–10739.
34. Y. Qian, Y. Zhou, M. Lu, X. Guo, D. Yang, H. Lou, X. Qiu, C.F. Guo, Direct construction of
catechol lignin for engineering long‐acting conductive, adhesive, and uv‐blocking hydrogel
bioelectronics. Small Methods 5 (2021) 2001311.
35. X. Ren, M. Yang, T. Yang, C. Xu, Y. Ye, X. Wu, X. Zheng, B. Wang, Y. Wan, Z. Luo, Highly
conductive PPy–PEDOT: PSS hybrid hydrogel with superior biocompatibility for bioelec
tronics application. ACS Appl. Mater. Interfaces 13 (2021) 25374−25382.
36. J. Chen, H. Wen, G. Zhang, F. Lei, Q. Feng, Y. Liu, X. Cao, H. Dong, Multifunctional con
ductive hydrogel/thermochromic elastomer hybrid fibers with a core–shell segmental con
figuration for wearable strain and temperature sensors. ACS Appl Mater Interfaces 12 (2020)
7565–7574.
37. C. Kleber, K. Lienkamp, J. Rühe, M. Asplund, Wafer‐scale fabrication of conducting polymer
hydrogels for microelectrodes and flexible bioelectronics. Advanced Biosystems 3 (2019) 1900072.
38. Z. Zhou, Z. He, S. Yin, X. Xie, W. Yuan, Adhesive, stretchable and antibacterial hydrogel with
external/self-power for flexible sensitive sensor used as human motion detection. Composites
Part B: Engineering 220 (2021) 108984.
39. Q. Wang, X. Pan, C. Lin, H. Gao, S. Cao, Y. Ni, X. Ma, Modified Ti3C2TX (MXene) nanosheet-
catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for
wearable bioelectronics. Chem Engg J 401 (2020) 126129.
40. L. Han, X. Lu, M. Wang, D. Gan, W. Deng, K. Wang, L. Fang, K. Liu, C.W. Chan, Y. Tang, A
mussel‐inspired conductive, self‐adhesive, and self‐healable tough hydrogel as cell stimu
lators and implantable bioelectronics. Small 13 (2016) 1601916.
41. C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.H. Sunwoo, S., Baik, O.K. Park, S.H. Choi, T. Hyeon, J.H.
Kim, Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-
permeable, and low-impedance hydrogels. Science Advances 7 (2021) eabd3716.
306
Bioelectronics